If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-26x+52=0
a = 3; b = -26; c = +52;
Δ = b2-4ac
Δ = -262-4·3·52
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{13}}{2*3}=\frac{26-2\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{13}}{2*3}=\frac{26+2\sqrt{13}}{6} $
| -3+8k=69 | | 5x+9/10=x/5 | | F(n)=-4n+4 | | 7k+k=-6 | | -b=18 | | 2/5x+5=7 | | 2g+2(-8+2g)=1-1g | | 9m+(-4m)+(-4m)=-4 | | 6(x+1)-(2x+6)=-8 | | N+2+6n=-12 | | -16t^2+32t+7=0 | | (1/3x)+(1/4)=7/12 | | y=-3/8-8 | | 3-0.25x=-1/2x+1 | | (6)6x+3=5x+10 | | Y=2x2-12x+17 | | 2(2x-9)+2(x+16)=36 | | 16h+(-17h)=(-20) | | -16^2+32t+7=0 | | 11y=10 | | 4(3x-1)+4=-36 | | -4-6b-4=-8 | | 18z+(-13z)+(-14z)+(-16)=2 | | 4=8p-7-7p | | y=-9/8-8 | | y=9/8-8 | | 7t-6=5(t+2) | | -3x+-15=2x+10 | | x/x+2=4/x+2 | | 9z+4z=78 | | 17=8x+7 | | 2/5(x-3)=4 |